首页 > 百科文章正文

概率与测度论

百科 2023-02-13 19:21:14 admin
后台-插件-广告管理-内容页头部广告(手机)

《概率与测度论》是2007年人民邮来自电出版社出版的图书,作者是RobertB.Ash。

  • 书名 概率与测度论
  • 作者 美RobertB.Ash
  • 出版社 人民邮电出版社
  • 出版时间 2007年9月
  • 页数 516 页

内容简介

  《概率与测度论(英文版 第2版)》是测度论和概率论领域的名著,行文流畅,主线清晰,材料取舍适当,内容包来自括测度和积分论、泛函分析、条件概率和期望、强大数定理和鞅论、中心极限定理、遍历定理以及布朗运动和随机积分等,全书各节都附有习题,而且在书后提供了大部分习题的详细解答。

  《概率与测度论(英文版 第此斯守否区镇某聚耐温必2版)》可作为相关专业高年级本科生或研究生的双语教材,适合作为一学年的教学内容,也可选用其中部分章节怎西本件火构用作一学期的教学内容或参考极曲评料井观未定控书。

作者简介

  Robert B.360百科Ash,伊利诺大学数学系教授。世界著名数学家,研究领域包括:信息理论、代数、拓扑、概率论、泛函分析等。主要著作有Measure,Integration and Functional Analysis和Information Theory等。

目录

  1 Fundamentals of Measure and Integratio来自n Theory

  1常日印始绿.1 Introduction

  1.2 Fields, o-Fields, and Measures

  1.3 Extension of Measures

  1.4 Lebesgue-Stieltjes Measures and Distribution Functi

  1.5 Measurable Functio360百科ns and Integration

  1.6 化策极额小住Basic Integration Theorems

  1.7 Comparison of Lebesgue and Riemann Integrals

  2 Further Results in Measure and Integration Theory

  2.1 Introduction

  2.2 Radon-Nikodym Theorem and Related Results

  2.3 Applications t风医留施吗土源渐o Real Analysis

  2.4 Lp Spaces

  2.5 Convergence of Sequences of Measurable Functions

  2.6 Product Measures and Fubinis Theorem

 强钱 2.7 Measures o厂态日个n Infinite Product Spaces

  2.8 Weak Convergence of Measures

  2.9 References

  3 Introduction to Fun古立门旧福千ctional Analysis

  3.1 Introduction

  3.2 Basic Properties of Hilbert Spaces

  3.3 Linear Operators on Normed Linear Spaces

  3.4 Basic Theorems of Functional Analysis

  3.5 References

  4 Basic Concepts of Probability

  4.1 Introduction

  4.2 Discrete P龙胶氧怎触robability Spaces

  4.3 In照财着原升弦时两dependence

  4.4 Bernoulli Trials

  4.5 Conditional Probability

  4.可销道马根银送6 Random Variables

  4.7 Random Vectors

  4.8 Independent Random Variables

  4.9 Some Examples from Basic Probability

  4.10 Expectation

  4.11 Infinite Sequences of Random Variables

  4.12 Referenc距且叫es

  5 Conditional Probability and Expectation

  5.1 In呼亚鸡联troduction

  5.2 Applications

  5.3 The General Concept of Conditional Probability an苏观干d Expectation

  5.4 医突的已粮圆防右绿过紧Conditional Exp套伯队丰帮规品微扬ectation Given a o-Field

  5.5 Properties of Conditio力修nal Expectati密答历四也作on

  5.6 Regular Conditional Probabilities

  6 Strong Laws of Large Numbers and Martingale Theory

  6.1 Introduction

  6.2 Convergence Theorems

  6.3 Martingales

  6.4 Martingale Convergence Theorems

  6.5 Uniform Integrability

  6.6 Uniform Integrability and Martingale Theory

  6.7 Optional Sampling Theorems

  6.8 Applications of Martingale Theory

  6.9 Applications to Markov Chains

  6.10 References

  7 The Central Limit Theorem

  7.1 Introduction

  7.2 The Fundamental Weak Compactness Theorem

  7.3 Convergence to a Normal Distribution

  ……

  8 Ergodic Theory

  9 Brownian Motion and Stochastic Integrals

  Appendices

  Bibliography

  Solutions to Problems

  Index

后台-插件-广告管理-内容页尾部广告(手机)

标签:

发表评论

评论列表

晴空网Copyright @ 2011-2023 All Rights Reserved. 版权所有 豫ICP备2022028056号 帝国CMS强力驱动 站长微信:88888888 统计代码